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Abstract

The focus of this paper is on presentation attack de-
tection for the iris biometrics, which measures the pattern
within the colored concentric circle of the subjects’ eyes,
to authenticate an individual to a generic user verification
system. Unlike previous deep learning methods that use sin-
gle convolutional neural network architectures, this paper
develops a framework built upon triplet convolutional net-
works that takes as input two real iris patches and a fake
patch or two fake patches and a genuine patch. The aim
is to increase the number of training samples and to gen-
erate a representation that separates the real from the fake
iris patches. The smaller architecture provides a way to do
early stopping based on the liveness of single patches rather
than the whole image. The matching is performed by com-
puting the distance with respect to a reference set of real
and fake examples. The proposed approach allows for real-
time processing using a smaller network and provides equal
or better than state-of-the-art performance on three bench-
mark datasets of photo-based and contact lens presentation
attacks.

1. Introduction
Liveness detection is a preventive approach for contain-

ing sensor level attacks in biometrics authentication sys-

tems, where a malignant user builds a fake replica of a le-

gitimate biometrics, applies it directly to the sensor and de-

clares its corresponding identity. This task is formulated as

a binary classification problem to establish if the claimed

identity is genuine or it does not correspond to the subject

in front of the sensor.

Currently, Presentation Attack Detection (PAD) tech-

niques are increasingly becoming critical for biometrics

systems since a large number of people use these technolo-

gies to access their personal data and for safety purposes

such as passing the security checks at airports. Unfortu-

nately, this massive usage of biometrics comes with vari-

ous security and privacy issues. Different attacks can be di-

rected to the authentication system to grant access to some

exclusive area or to steal confidential data. For instance, the

software and the network configuration can have security

holes or bugs, and the matching algorithms can be fooled

if the attacker knows the software implementation details.

Moreover, whereas a physical key or badge can be replaced,

the biometrics are permanent and their pattern, if visible,

can be easily captured and reproduced.

Among all the weak points of an authentication system,

the biometrics scanner is probably the most vulnerable part

since it is in direct contact with the potential malignant user

that has to be captured. Liveness detection is a technique to

prevent these so called presentation attacks by formulating

a binary classification problem to establish whether the bio-

metrics under examination comes from a legitimate user or

it is an illegitimate authentication attempt [9].

In this paper we focus on the iris biometrics [33, 35],

where the pattern in the eyes can be easily obtained from

a high-resolution photograph and then showed to a sensing

device, fooling the authentication system by declaring the

identity of the real biometrics owner (e.g., using a printed

photo, a video on a tablet or printed contact lens). Figure 1

shows some examples of photos that simulate a photo-based

presentation attack [5].

Figure 1. Samples from the Iris-2013-Warsaw dataset [5]. In the

first column two real samples, followed by the corresponding print

attacks.

Liveness detection systems can be distinguished as hard-

ware and software systems. Hardware systems [9] use addi-

tional sensing devices to spot the characteristics of a living
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human eye (e.g., the movement of the eyeball and 3D in-

formation). In this work, we propose a software system,

which falls under those techniques that can be introduced

into any sensor software development toolkit (SDK) with-

out requiring additional sensing devices. The software of

an iris scanner can be updated with no additional cost, and

if a software technique is robust to a variety of attacks and

does not annoy the users with too many false positives, it

can be an alternative with respect to acquiring new sensing

devices.

To date, few studies [21] took advantage of deep learn-

ing for the task of iris liveness detection. Deep learning has

seriously improved the state-of-the-art in visual perception

[18, 19, 10] and the ability to generate hierarchical repre-

sentations and discover complex structures in raw images

allows for better representations with respect to the tradi-

tional methods based on handcrafted features. Software-

based systems for iris liveness detection can take advantage

of the broad literature where similar tasks have already been

addressed. In particular, we notice that a notion of similar-

ity among real and fake iris samples has not yet been mod-

eled. We make a step in this direction by proposing a deep

metric learning approach based on Triplet networks [14].

Specifically, the three networks map the iris images into a

representation space, where the learned distance captures

the similarity of the examples coming from the same class

and push away the real samples from the fake ones. Unlike

other metric learning approaches, such as the ones involv-

ing Siamese networks [2], the triplet objective function puts

in direct comparison the relations among the classes, giving

a notion of context that does not require setting a threshold

to make a new prediction [14]. Another advantage is the

number of examples that can be generated by arranging the

images in triplets. This is particularly useful in those bio-

metrics applications where the amount of training data is

not as large as more general artificial intelligence oriented

datasets [26].

We propose a framework that learns a representation

from iris patches, starting from a set of real and fake sam-

ples given as a training/reference set. Since at test time only

an iris image is given, we make our decision on the basis of

a matching score, computed against the reference set. The

similarity metric is learned using a variation of the original

triplet objective formulation [36, 14] that adds a pairwise

term enforcing the vicinity of two samples of the same class

[3]. We performed experiments for two kinds of presenta-

tion attacks: photo-based attacks via the Iris-2013-Warsaw

dataset [5] employed for the LivDet1 competition held in

2013 [38] and cosmetic lens attacks via the IIIT Cogent and

Vista datasets [37]. The former simulates a malignant user

showing to the sensor a photo of the victim eye, while the

latter simulates an attack where the user is wearing contact

1http://livdet.org/

lens printed with the victim’s iris pattern.

The paper is structured as follows. In section 2 we

present some of the current approaches for designing iris

liveness detection systems, and the state-of-the-art. In sec-

tion 3 we explain the details of the proposed framework and

in section 4 we provide the experimental results. The final

section 5 is dedicated to the conclusions.

2. Related Work and Contributions

In this section, we describe various iris liveness detection

techniques, particularly with a focus on the ones related to

our method, which can be considered as a static software

based technique [9].

2.1. Hardware-based Systems

Hardware-based systems make use of additional sensing

devices in order to test the liveness of the iris acquisition.

The liveness detection is mainly performed in two differ-

ent ways: by capturing some properties of the iris that are

difficult or impossible to see from the iris scanner acquisi-

tion (e.g. tissue, blood vessels [35]) and by studying some

behavioral characteristics. In the latter, we can further cat-

egorize methods that analyze the natural attitude of the eye

(e.g. eye hippus, natural oscillation of the pupil [39]) and

that study the response when solicited by an external stim-

ulus (challenge/response, e.g. requiring the user to blink or

looking into a particular direction/path [25]).

2.2. Software-based Systems

Software based techniques do not require additional

hardware and can be integrated into the software develop-

ment kit of the sensing device, taking advantage of the same

image acquired for iris recognition. These techniques can

be characterized by two kinds of characteristics: dynamic

and static features [11]. Dynamic features involve behav-

ioral characteristics such as eye blinking, pupil size oscilla-

tions and dynamic reflections that are particularly useful for

photo-based attacks. One of the early works on iris liveness

detection [7] pointed out that retinal light reflections com-

monly known as the red-eye effect can be a useful clue for

detecting presentation attacks. Other approaches consist of

controlling the light reflection from the cornea [5] and the

pupil dynamics [6].

Static features, can also be extremely useful for iris live-

ness detection since, as firstly noticed by [7], printed im-

ages of irises present artificial artifacts that can be spotted

by computer vision algorithms. He proposed a frequency

analysis by applying a 2D Fourier transform in order to spot

those frequencies that are probably the result of a printing

attack. The work has been continued by other researchers,

who applied different kinds of frequency analysis such as

Wavelets [13] and Laplacian pyramids [24].
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Other approaches consider instead the textural patterns

of the iris image using popular texture descriptors such as

Local Binary Patterns (LBP) [13], Binary Statistical Im-

age Features (BSIF) [23], Scale-Invariant Feature Trans-

form (SIFT) [20] and Local Phase Quantization (LPQ) [11].

For instance, in [29], SIFT features have been used to gen-

erate a hierarchical visual codebook that is able to generate

a textural representation of irises for liveness detection.

2.3. Contributions of this Paper

This paper presents a framework for iris liveness detec-

tion that overcomes many of the problems with classical

convolutional neural network architectures for biometrics

applications.

First, an interesting point with respect to tasks such as

generic image classification is the scarcity of data. Dealing

with few samples is difficult since the networks are prone to

overfitting. We use a smaller architecture and provide a way

to do early stopping based on the liveness of single patches

rather than the whole image. Classical early stopping algo-

rithms would result in under fitting. With respect to [7] we

introduced some of the recent advancements in deep metric

learning and reduced the computational complexity. Thus,

with respect to other iris liveness detection methods we in-

troduced some improvements in the field.

Second, the computational complexity is very important

since biometric authentication systems on mobile devices

are implemented on a chip and the data acquisition is not

visible by the software for security reasons. A small archi-

tecture proposed in our approach can be more easily imple-

mented on the hardware.

Third, our approach extracts a signature ready to be

matched using a simple Euclidean distance and the origi-

nal image can be discarded which improves the security of

the system.

Fourth, we show the results on three different datasets.

We compare our results with respect to the Shift-Invariant

Descriptor (SID) proposed in [17], refined in [16] and ap-

plied to liveness detection by [11]. We also compare with

the only previous work (as the best of authors knowledge)

using deep learning algorithms [22]. Further, we compare

with other three handcrafted features based approaches,

tested by [11] for liveness detection: the Dense SIFT de-

scriptor, DAISY [30] and the Local Contrast-Phase De-

scriptor (LCPD) [12].

3. A Deep Triplet Embedding for Iris Liveness
Detection

In this section we describe the proposed method for iris

liveness detection based on triplet loss embedding. We start

by describing the overall framework, subsequently we in-

troduce the network architecture and the training algorithm.

Finally, we describe the matching procedure that leads to

the final decision on the liveness of a given iris image.

3.1. Framework

As depicted in Fig.2, the proposed framework requires a

collection of real and fake iris images taken from a sensor

and used as a training set. From each image, we randomly

extract one fixed sized patch, and arrange them in a certain

number of triplets {xi, x
+
j , x

−
k }, where xi (anchor) and x+

j

are two examples of the same class, and x−k comes from the

other class. We alternatively set the anchor to be a real or a

fake iris patch.

The architecture is composed of three convolutional net-

works with shared weights, so that three images can be pro-

cessed at the same time and mapped into a common feature

space. We denote by r(·) the representation of a given patch

obtained from the output of one of the three networks. The

deep features extracted from the live and fake iris acquisi-

tions are compared in order to obtain an intra-class distance

d(r(x), r(x+)) and an inter-class distance d(r(x), r(x−)).
The objective is to learn d so that the two examples of the

same class are closer than two examples taken from differ-

ent classes and two samples of the same class are as close

as possible. After training the networks with a certain num-

ber of triplets, we extract a new patch from each training

sample and generate a new set of triplets. This procedure is

repeated until convergence, see more details in section 4.2.

After the training process is completed, the learned met-

ric is used as a matching distance to establish the liveness

of a new iris image. Given a query iris acquisition, we

can extract p (possibly overlapping) patches and give them

as input to the networks in order to get a representation

Q = {r(Q1), r(Q2), . . . , r(Qp)}. Since we are not directly

mapping each patch to a binary liveness label, but generat-

ing a more fine-grained representation, the prediction can

be made by a decision rule based on the learned metric d
computed with respect to a set RL and RF of real and fake

reference patches:

RL = {r(xL1
), r(xL2

), . . . , r(xLn
)} (1a)

RF = {r(xF1
), r(xF2

), . . . , r(xFn
)} (1b)

where the patches xLi and xFi can be taken from the train-

ing set or from a specially-made design set.

3.2. Network Architecture

We employ a network architecture inspired by [27]

where max-pooling units, normally used for downsampling

purposes, are replaced by convolution layers with increased

stride. Table 1 contains the list of the operations performed

by each layer of the embedding networks.

The architecture is composed of a first convolutional

layer that takes the 32x32 grayscale iris patches and out-

puts 64 feature maps by using filters of size 5x5. Then,
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Figure 2. Overall architecture of the proposed iris liveness detection system. From the training set (a) of real and fake iris acquisitions, we

train a triplet network (b) using alternatively two patches of one class and one patch of the other one. The output of each input patch is

used to compute the inter- and intra-class distances (c) in order to compute the objective function (d) that is used to train the parameters

of the networks. After training, a set of real and a set of fake reference patches (e) is extracted from the training set (two patches for each

iris acquisitions) and the corresponding representation is computed forwarding them through the trained networks. At test time, a set of

patches is extracted from the iris image (f) in order to map them to the same representation space as the reference gallery and are matched

(g) in order to get a prediction on its liveness.

batch normalization [15] is applied to get a faster training

convergence and rectified linear units (ReLU) are used as

non-linearities. Another convolutional layer with a stride

equal to 2, padding of 1 and filters of size 3x3 performs a

downsampling operation by a factor of two in both direc-

tions.

The same structure is replicated two times, reducing the

kernel size to 3x3 and increasing the number of feature

maps from 64 to 128 and from 128 to 256. At this point,

the feature maps have the size of 128x2x2 and are further

processed by two fully connected layers with 256 outputs

followed by a softmax layer. This non-linearity helps in

getting a better convergence of the training algorithm and

ensure that the distance among to outputs does not exceed

one. Dropout [28] with probability 0.4 is applied to the first

fully connected layer for regularization purposes.

The complete network is composed of three instances of

this architecture: from three batches of iris images we get

the L2 distances between the matching and mismatching

images. At test, we take the output of one of the three

networks to obtain the representation for a given patch.

If there are memory limitations, an alternative consists

of using just one network, collapse the three batches into

a single one, and computing the distances among the

examples corresponding to the training triplets.

Table 1. Architecture of the proposed embedding network.
Layer description output

32x32 gray level image

5x5 conv. filters, stride 1, 1→ 64 feat. maps 64x28x28

batch normalization 64x28x28

rectifier linear unit 64x28x28

3x3 conv. filters, stride 2, padding 1, 64→ 64 feat. maps 64x14x14

3x3 conv. filters, stride 1, 64→ 128 feat. maps 64x12x12

batch normalization 64x12x12

rectifier linear unit 64x12x12

3x3 conv. filters, stride 2, padding 1, 128→ 128 feat. maps 128x6x6

3x3 conv. filters, stride 1, 128→ 256 feat. maps 256x4x4

batch normalization 256x4x4

rectifier linear unit 256x4x4

3x3 conv. filters, stride 2, padding 1, 256→ 256 feat. maps 256x2x2

fully connected layer 4x256→ 256 256

dropout p = 0.4 256

rectifier linear unit 256

fully connected layer 256→ 256 256

softmax 256

3.3. Training

As schematized in Figure 3, the triplet architecture along

with the triplet loss function aims to learn a metric that

makes two patches of the same class closer with respect

to two coming from different classes. The objective is to

capture the cues that make two iris acquisitions both real or
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fake. The real ones come from different people and eyes,

and their comparison is performed in order to find some

characteristics that make them genuine. At the same time,

fake iris images come from different people and can be built

using different techniques.

Given a set of triplets {xi, x
+
j , x

−
k }, where xi is the an-

chor and x+
j and x−k are two examples of the same and the

other class, respectively, the objective of the original triplet

loss [14] is to give a penalty if the following condition is

violated:

d(r(xi), r(x
+
j ))− d(r(xi), r(x

−
k )) + 1 ≤ 0 (2)

At the same time, as proposed by [36, 3] we would like to

have the examples of the same class as close as possible so

that, when matching a new iris image against the reference

patches of the same type, the distance d(r(xi), r(x
+
j )) is

as small as possible. If we denote by y(xi) the class of

a generic patch xi, we can obtain the desired behavior by

formulating the following loss function:

L =
∑
i,j,k

{
c(xi, x

+
j , x

−
k ) + βc(xi, x

+
j )

}
+ λ‖θ‖2 (3)

where θ is a one-dimensional vector containing all the train-

able parameters of the embedding network, y(xi) = y(xj),
y(x−k ) �= y(xi) and:

c(xi, x
+
j , x

−
k ) =

∣∣d(r(xi), r(x
+
j ))− d(r(xi), r(x

−
k )) + 1

∣∣
+

(4a)

c(xi, x
+
j ) = d(r(xi), r(x

+
j )) (4b)

where c(xi, x
+
j , x

−
k ) is the inter-class and c(xi, x

+
j ) the

intra-class distance term. λ‖θ‖2 is an additional weight de-

cay term added to the loss function for regularization pur-

poses. During training, we compute the subgradients and

use backpropagation through the network to get the desired

representation.

After a certain number of iterations k, we periodically

generate a new set of triplets by extracting a different patch

from each training iris image. It is essential not to update

the triplets after too many iterations because it can result in

overfitting. At the same time, generating new triplets too of-

ten or mining hard examples can cause convergence issues.

3.4. Matching

In principle, any distance among bag of features such as

the Hausdorff distance, can be used in order to match the

query iris Q = {r(Q1), r(Q2), . . . , r(Qp)} against the ref-

erence sets RL and RF . Since the training objective dras-

tically pushes the distances to be very close to zero or to

one, a decision on the liveness can be made by setting a

simple threshold τ = 0.5. In particular, the Hausdorff dis-

tance would be too sensitive to outliers since it involves the

computation of the minimum distance between a test patch

and each patch of each reference set. Even if using the k-th

Hausdorff distance [34], that considers the k-th value in-

stead of the minimum, we obtained a better performance by

following a simple majority voting strategy. It is also faster

since it does not involve sorting out the distances.

Given a iris query Q, for each patch Qj we count how

many distances for each reference set are below the given

threshold:

D(RL, Qj) = |{i ∈ {1, . . . , n} : d(RLi , Qj) < τ}| (5a)

D(RF , Qj) = |{i ∈ {1, . . . , n} : d(RFi , Qj) < τ}| (5b)

then we make the decision evaluating how many patches

belong to the real or the fake class:

y(Q) =

{
real if

∑p
j=1 D(RL, Qj) ≥

∑p
j=1 D(RF , Qj)

fake otherwise

(6)

The above method can also be applied in scenarios where

both eyes are acquired from the same individual. For in-

stance, the patches coming from different eyes can be ac-

cumulated in order to apply the same majority rule of Eq.

6, or the decision can be made on the most suspicious iris

acquisition.

4. Experiments
In this section we evaluate the proposed approach for iris

liveness detection on photo-based [5] and contact lens pre-

sentation attacks [37].

The network architecture along with the overall frame-

work have been implemented using the Torch7 computing

framework [4] on an NVIDIA R© DIGITSTM DevBox with

four TITAN X GPUs with 7 TFlops of single precision,

336.5 GB/s of memory bandwidth, and 12 GB of memory

per board. MATLAB R© has been used for image segmenta-

tion.

4.1. Datasets

We performed experiments on three datasets: the Iris-

2013-Warsaw photo-based attacks dataset [5] and the IIIT

Cogent and Vista cosmetic lens datasets [37].

The photo based attacks were acquired using a HP Laser-

Jet 1320 and a Lexmark c534dn printer and a hole has been

applied in place of the pupil check. Since the cameras

usually search for pupil reflections, the simulated attacker

would put the print over his/her eyes in order to fool the sys-

tem. The number of live samples is 228 for training and 624

for testing while the number of fake acquisitions is 203 for

training and 612 for testing. The number of distinct eyes is

284, while the number of distinct spoofed eyes is 276. More

details are provided in the report of the competition [38].
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Figure 3. The training procedure uses examples as triplets formed by (a) two real irises (in green) and one impostor (in yellow) and (b) two

impostors and one genuine. The training procedure using the triplet loss will result in an attraction for the irises of the same class (either

real or fake) so that their distance will be as short as possible. At the same time real and fake irises will be pushed away from each other

(c).

The IIIT-D cosmetic contact lens database [37] is com-

posed of 6570 iris images appertaining to 101 individuals

and acquired using two different iris sensors: Cogent and

Vista. As in [11] we considered soft contact lens as live

samples since they do not hide the iris pattern. Correct

identification is instead not possible for the textured lens,

therefore they are considered as a presentation attack.

4.2. Experimental Setup

For all the experiments we evaluate the performance in

terms of Average Classification Error (ACE). This is the

measure used to evaluate the entries in the LivDet competi-

tions [38], and is the average of the following two ISO/IEC

SC37 metrics: Attack Presentation Classification Error Rate

(APCER) and the Bona Fide Presentation Classification Er-

ror Rate (BPCER). For all the experiments we follow the

standard protocol and since a validation set has not been de-

fined by the dataset providers, we reserved a fixed amount

of 40 iris images from the training set (20 real and 20 fake).

For the Iris-2013-Warsaw photo-based attack dataset [5]

we used the same training/test partition used for the compe-

tition. For the IIIT Cogent and Vista cosmetic lens datasets

[37] instead, as in [11] we did a two-fold cross-validation

using different subjects for each set.

The triplets set for training is generated by taking one

patch from each iris acquisition and arranging them alter-

natively in two examples of one class and one of the other

class. The set is updated every k = 100, 000 triplets that are

fed to the networks in 1000 batches of 100 examples. In the

remainder of the paper we refer to each update as the start of

a new iteration. We use stochastic gradient descent to min-

imize the triplet loss function, setting a learning rate of 0.5

and a momentum of 0.9. The learning rate η0 is annealed

by following the form:

η =
η0

1 + 10−4 · b (7)

where b is the progressive number of batches that are being

processed. That is, after ten iterations the learning rate is

reduced by half. The weight decay term of Eq. 3 is set to

λ = 10−4.

After each iteration we check the validation error. In-

stead of using the same accuracy measured at test (the aver-

age classification error), we construct 100, 000 triplets using

the validation set patches, but taking as anchor the reference

patches taken from the training set and used to match the

test samples. The error consists on the number of violating

triplets, and reflects how much the reference patches failed

to classify patches never seen before. Instead of fixing the

number of iterations, we employ early stopping based on

the concept of patience [1]. Each time the validation error

decreases, we save a snapshot of the network parameters,

and if in 5 consecutive iterations the validation error is not

decreasing anymore, we stop the training and evaluate the

accuracy on the test set using the last saved snapshot.

All the images were cropped to include only the iris re-

gion using the integro-differential operator of [8]. Then we

normalized the resulting image with zero mean and unitary

variance.

4.3. Experimental Results and Comparison

In this section we compare our framework against

the SID descriptor [11], the convolutional neural network

method [22], the dense SIFT Descriptor [11], the DAISY

descriptor [30] and the LCPD descriptor [12]. In Table 2

we list the performance in terms of average classification

error on the Iris-2013-Warsaw dataset [38] and the IIIT Co-

gent and Vista cosmetic lens datasets [37].

With respect to the current best performing methods

[11, 21] we obtained a 0% error for the Iris-2013-Warsaw

dataset, in line with the SID descriptor of [11]. For the Co-

gent and Vista datasets we get the lowest average classifica-

tion error, especially, for Vista with an improvement of 72%

with respect to the state-of-the-art [22].
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Table 2. Average Classification Error for the three datasets: Iris-2013-Warsaw, IIIT Cogent and Vista. Different columns show

results from different approaches: in column 2 our TripletNet based approach, in column 3 the SID descriptor [11], in column 3 the

convolutional neural networks method [22], in column 4 the dense SIFT Descriptor [11] based approach, in column 5 the DAISY descrip-

tor [30] and in column 6 the LCPD descriptor [12]. SID, Dense SIFT, DAISY and LCPD have been tested for iris liveness detection by [11].

Dataset TripletNet SID [11] CNN [21] Dense Sift [22] DAISY [30] LCPD [12]

Iris-2013-Warsaw 0.0 0.0 0.2 0.5 0.9 7.1

Cogent 5.5 6.2 - 13.9 17.2 11.0

Vista 0.7 3.5 - 2.5 8.8 3.1

4.3.1 Computational Efficiency

One of the key benefits of our approach is the computational

time since the patch representation allows for scaling the

matching procedure on different computational units.

The time to compute the deep representation from a sin-

gle iris image, extracting 100 patches, is of 0.6ms using a

single GPU and 0.3s using a Core i7-5930K 6 Core 3.5GHz

desktop processor (single thread). The matching procedure

takes 5.2ms on a single GPU and 14ms on the CPU. Finally,

the training process converges after an average of 36 itera-

tions. At each training iteration, the networks take 84s to

handle 100, 000 triplets. For validation, since the weights

are not updated, only 20s are required.

5. Conclusions and Future Work
In this study, we introduced a framework for iris live-

ness detection which embeds the recent advancements in

deep metric learning. We validated the effectiveness of

our approach in scenarios where the iris acquisition system

has been violated by photo-based and contact lens attacks.

The approach is able to work in real-time and has a bet-

ter accuracy over the state-of-the-art on two test benchmark

datasets.

In conclusion, we point out that the employment of soft-

ware based liveness detection systems should never give a

sense of false security to their users. As in other areas such

as cyber security, the attackers become more resourceful ev-

ery day and new ways to fool a biometric system will be dis-

covered. Therefore, such systems should be constantly up-

dated and monitored, especially in critical application such

as airport controls.

Future work will involve considering different kind of

attacks, such as eyes extracted from cadavers [31]. Ex-

periments will be performed on larger datasets considering

subjects of different age, sex and ethnicity [32] that are ac-

quired under different time periods, environments and us-

ing a variety of sensors with a multitude of spoofing attacks

simulations.
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